Brief information about the project

Name of the project	AP19678156 "Development of technology for obtaining
	magnetically controlled organophilic sorbents"
Relevance	The project is dedicated to the development of technology
	for producing oil and hydrocarbon collectors with a
	controlled trajectory based on natural sorbents, magnetite
	and magnetotactic bacteria.
	Pollution of the environment by liquid hydrocarbons is one
	of the urgent problems for all mankind. The main source
	of pollution is tankers engaged in the transportation and
	delivery of oil. For Kazakhstan as an oil-producing
	country, this becomes especially topical in the light of the
	proposals of the President of the Republic of Kazakhstan
	K.K. Tokayev to open oil exports to Europe by water,
	through the Caspian Sea.
	When oil is spilled on the surface of the water, it is of great
	importance to resolve the issue of removing already
	adsorbed oil from the surface, since the treatment of oil
	with other materials: peat, wool, sawdust contributes to its
	deposition because of an increase in mass. The deposition
	of this agglomerate poses an even greater danger to the
	water basin, as it will release toxic substances over a long
	period. Therefore, measures are needed to remove them
	from the water surface.
Purpose	Development of technology for obtaining magnetically
i uipose	controlled organophilic sorbents.
Objectives	1. To obtain sorbents of liquid hydrocarbons and oil based
	on affordable and cheap raw materials of organic and
	mineral nature.
	2. To give magnetically controlled properties to the
	sorbent obtained by including magnetite particles or
	magnetotactic bacteria in their composition.
	3. To conduct a comparative analysis of the sorption
	· · · ·
	properties of composite magnetic sorbents based on
	organic and mineral raw materials in relation to
	hydrocarbons and oil.
	4. To optimize the conditions for purposeful regulation of
	sorption and magnetic properties of organophilic sorbents
	based on mineral and organic raw materials.
Expected and achieved results	1. The conditions for obtaining hydrophobized clays based
	on raw materials from Kazakhstan, ensuring high oil
	absorption will be proposed. By modifying the surface of
	diatomite and vermiculite particles with water-soluble and
	oil-soluble surfactants, diatomite and vermiculite particles
	with hydrophobic properties will be obtained, optimal
	ratios between surfactants, clays and modification modes
	are determined. The technology of obtaining carbonized
	sorbents from various types of vegetable raw materials will
	be proposed: wood (birch activated carbon), corn cobs, nut
	shells, stems and sunflower press cake.
	2. Will be determined the conditions for obtaining

	 magnetic composites of organophilic sorbents based on clay sorbents and plant raw materials by introducing magnetite particles and magnetotactic bacteria into the sorbent structure. 3. Will be studied a comparative analysis of the sorption activity of magnetic sorbents based on diatomite, vermiculite, carbonized vegetable raw materials in relation to liquid hydrocarbons and oil will be carried out, the kinetics of sorption. 4. The ways of regulating the hydrophobity, specific surface area, porosity, sorption, and magnetic activity of composites of hydrophobic sorbents will be developed, magnetite and magnetotactic bacteria using surfactants and polymers will be optimized. A technology for producing organophilic sorbents with magnetic susceptibility based on clay minerals and carbonized plant raw materials.
	Results achieved The conditions for producing magnetic sorbents based on birch activated carbon (BAC) and clay minerals: diatomite and vermiculite have been optimized. The surface of diatomite and vermiculite was modified using water- soluble cationic surfactants, which ensures a high degree of hydrophobicity of clays. The sorption capacity of magnetic composites based on coals obtained from birch and corn cobs, and clay minerals on a model adsorbate - methylene blue, as well as the adsorption of hexane and oil, was assessed. Research will continue in the direction of imparting magnetic properties to hydrophobized clays and obtaining carbonized sorbents from various types of plant raw materials.
Research team members with their identifiers (Scopus Author ID, Researcher ID, ORCID, if available) and links to relevant profiles	doctor of chemical science, professor Tazhibayeva Sagdat Web of Science Researcher ID: B-1304-2015 ORCID ID: https://orcid.org/0000-0003-3300-3235 Scopus author ID: 55975626500
	doctor of chemical science, professor Musabekov Kuanyshbek Web of Science Researcher ID: A-4960-2015 ORCID ID: 0000-0003-1114-1901 Scopus author ID: 6603479894
	candidate of chemical science, Associate Professor Tyussyupova Bakyt Web of Science Researcher ID: A-5582-2015 ORCID ID: https://orcid.org/0000-0001-6149-2326 Scopus author ID: 57210286932
	doctor of chemical science, professor Ongarbayev Yerdos Web of Science Researcher ID: ABE-5513-2021 ORCID ID: https://orcid.org/0000-0002-0418-9360

	Scopus Author ID: 35240827900
	candidate of chemical sciences, Ibraimova Dana
	ORCID ID: 0000-0002-1761-9745
	Scopus Author ID : 57223263452
	PhD, Tastambek Kuanysh
	Web of Science Researcher ID: AAO-3781-2020
	ORCID ID: 0000-0002-2338-8816
	Scopus Author ID: 57200176041
	PhD, Tattibayeva Zhadra
	<u>ORCID ID: 0000-0001-9164-4220</u>
	Scopus Author ID: 57346480500
	fourth year student Hairulla Nurai
	first year doctoral student Haoran Zhang
List of publications with links to	-
them	
Patents	-

The project participants associate professor Tyusyupova B.B. and 4th year student of specialty 6B05301 - "Chemistry" Khairulla N. are working on obtaining carbonized magnetic sorbents based on corn cobs and oil adsorption on them.

Sorbents based on corn cobs

Carbonized sorbent based on corn cobs

Carbonized magnetic composite based on corn cobs